Fórmula de Cardano e intuição

Relativamente às raízes do polinómio cúbico

f(x)=x^3+bx+c

Holdsworth88 colocou uma questão antiga, no MSE, Question Regarding Cardano’s Formula, em que pergunta se há uma explicação intuitiva para a separação da variável x na soma de u e v.

Tradução da minha resposta:

Cardano sabia que qualquer equação quadrática da forma

x^2+bx+c=0\qquad(1)

se pode escrever como

x^2-(u+v)x+uv=0\qquad(2)

em que uv são as raízes da equação. Visto que fazendo t=u+v na equação cúbica reduzida

t^3+pt+q=0\qquad(3)

se obtém

(u^3+v^3+q)+(3uv+p)(u+v)=0\qquad(4)

então qualquer raiz do sistema

u^3+v^3+q=0\qquad(5a)

3uv+p=0\qquad(5b)

é igualmente uma raiz de (4), e, com base na propriedade da equação quadrática indicada em (2), é agora fácil achar a fórmula de t que satisfaça a equação (3).

Necessitamos apenas de determinar dois números u^3v^3 cuja soma seja -q e o produto, -p^3/27, que sabemos de (1)-(2) são as raízes da equação quadrática

Y^2+qY-\dfrac{p^3}{27}=0.\qquad(6)

Por conseguinte,

t=u+v=\sqrt[3]{u^3}+\sqrt[3]{v^3}.

Dois desenvolvimentos em série de Laurent

Na questão Finding the Laurent series of f(z)=1/((z-1)(z-2)), Freeman perguntou como se determina a série de Laurent da função

f(z)=\dfrac{1}{(z-1)(z-2)}

em R_1=\{z: 1<|z|<2\} e R_2=\{z:|z|>2\}.

Tradução da minha resposta:

A função f(z) pode desenvolver-se em duas fracções parciais

f(z):=\dfrac{1}{(z-1)(z-2)}=\dfrac{1}{z-2}-\dfrac{1}{z-1}.

Vamos desenvolver agora cada fracção numa série geométrica. Em R_{2} estas séries são:

\begin{aligned}\frac{1}{z-2}&=\frac{1}{z\left( 1-2/z\right) }=\frac{1}{z}\sum_{n=0}^{\infty }\left( \frac{2}{z}\right)^{n}\qquad\left\vert  z\right\vert >2\\[2ex]&=\frac{1}{z}\sum_{n=0}^{\infty }2^{n}\frac{1}{z^{n}}=\sum_{n=0}^{\infty}2^{n}\frac{1}{z^{n+1}}\end{aligned}

e

\begin{aligned}\frac{1}{z-1}&=\frac{1}{z\left( 1-1/z\right) } \\[2ex]  &=\frac{1}{z}\sum_{n=0}^{\infty }\left( \frac{1}{z}\right)  ^{n}=\sum_{n=0}^{\infty }\frac{1}{z^{n+1}}\qquad \left\vert z\right\vert >1.  \end{aligned}

Assim, a série de Laurent será

\dfrac{1}{\left( z-1\right) \left( z-2\right) }=\displaystyle\sum_{n=0}^{\infty }\frac{1}{z^{n+1}}(2^{n}-1)\qquad \left\vert z\right\vert >2>1.

E em R_{1} as duas séries geométricas são

\begin{aligned}  \frac{1}{z-2} &=\frac{-1/2}{1-z/2}=\sum_{n=0}^{\infty }\left( -\frac{1}{2}  \right) \left( \frac{z}{2}\right) ^{n}\qquad \left\vert z\right\vert <2 \\[2ex]  &=\sum_{n=0}^{\infty }-\frac{1}{2^{n+1}}z^{n}  \end{aligned}

e

\begin{aligned}  \frac{1}{z-1} &=\frac{1/z}{1-1/z}=\sum_{n=0}^{\infty }\frac{1}{z}\left(  \frac{1}{z}\right) ^{n}\qquad \left\vert z\right\vert >1 \\[2ex]  &=\sum_{n=0}^{\infty }\frac{1}{z^{n+1}}.  \end{aligned}

Obtemos, portanto, a seguinte série de Laurent:

\dfrac{1}{\left( z-1\right) \left( z-2\right) }=\displaystyle\sum_{n=0}^{\infty }\left( -  \dfrac{1}{2^{n+1}}z^{n}-\dfrac{1}{z^{n+1}}\right) \qquad 1<\left\vert  z\right\vert <2.

Demonstração de que n^4 + 4, n>5, é composto

Na questão Prove a number is composite , Chan perguntou, no Mathematics Stack Exchange (MSE), como se pode demonstrar que

n^4 + 4

é um número composto para todos os n>5.

Tradução da minha resposta:

Pode-se factorizar algebricamente n^{4}+4, encontrando, primeiro, as quatro raízes de n^{4}+4=0.

Como n^{4}+4=0\Leftrightarrow n^{4}=4e^{i\pi }, tem-se

\begin{aligned}n&=4^{1/4}e^{i (\pi +2k\pi)/4}\quad k=0,1,2,3\\  &&\\n&=\sqrt{2}e^{i\pi /4 }=1+i\quad\left( k=0\right)\\[2ex]n&=\sqrt{2}e^{i 3\pi /4 }=-1+i\quad\left( k=1\right)\\[2ex]n&=\sqrt{2}e^{i 5\pi/4 }=-1-i\quad\left( k=2\right)\\[2ex]n&=\sqrt{2}e^{i 7\pi/4}=1-i\quad\left( k=3\right).\end{aligned}

Combinando, agora, os factores complexos conjugados, obtém-se:

\begin{aligned}n^{4}+4&=\left( n-1-i\right) \left( n+1-i\right) \left( n+1+i\right)\left( n-1+i\right)\\[2ex]&=\left( \left( n+1-i\right) \left( n+1+i\right) \right) \left( \left(n-1-i\right) \left( n-1+i\right) \right)\\[2ex]&=\left( n^{2}+2n+2\right) \left( n^{2}-2n+2\right).\end{aligned}

Nota: para n>1, n^2+2n+2>5 and n^2-2n+2>1.

Potências complexas

Na questão já antiga Understanding imaginary exponents do Mathematics Stack Exchange, friedo perguntou, entre outros, qual o significado de x^i, em que x é um número real.

Tradução da minha resposta:

A exponencial complexa e^z, com z=x+iy complexo, preserva a lei dos expoentes da exponencial real e verifica a igualdade e^0=1.

Por definição,

e^z=e^{x+iy}=e^xe^{iy}=e^x(\cos y+\sin y)

o que está de acordo com a função exponencial real quando y=0.

O valor principal (principal value) do logarítmo de z=x+iy é o número complexo

w=\text{Log }z=\log |z|+i\arg z

tal que e^w=z, em que \arg z (o valor principal do argumento ou argumento principal de z) é o número real que verifica a condição -\pi<\text{arg }z\le\pi, com x=|z|\cos (\arg z) e y=|z|\sin (\arg z).

A potência complexa é

z^w=e^{w\text{ Log} z}.

No seu exemplo, z=x,w=i é, portanto, x^i=e^{i \text{ Log}x}.

Se x>0, então \text{Log }x=\log x. Se x<0, então \text{Log }x=\log|x|+i\pi.

Exemplos:

(-1)^i=e^{i\text{Log }(-1)}=e^{i(i\pi)}=e^{-\pi}.

2^i=e^{i\text{Log }(2)}=e^{i\log 2}=\cos (\log 2)+i\sin (\log 2).

(-2)^i=e^{i\text{Log }(-2)}=e^{i(\log 2+i\pi)}=e^{i\log 2}e^{-\pi}=(\cos (\log 2)+i\sin (\log 2))e^{-\pi}.

Exercício sobre o método de Ostrogradski-Hermite de primitivação de funcões racionais

Nesta questão, no MSE,  juantheron pergunta se o integral

\displaystyle\int\dfrac{5x^3+3x-1}{(x^3+3x+1)^3}\; dx

se pode calcular directamente, pelo método de substituição, em vez de admitir que a primitiva é da forma

f(x) = \dfrac{ax+b}{(x^3+3x+1)^2}

calcular f'(x) e determinar as constantes a e b, chegando a a = -1 e b = 0.

Tradução da minha resposta.

Posso estar enganado, mas parece-me que o integral dado não se pode calcular por substituição. De qualquer maneira, para integrar uma função racional  P(x)/Q(x) sem a decompor em fracções parciais e sem achar as raízes do denominador, pode-se usar o método de strogradski-Hermite, que generaliza a sua conjectura educada [de que o integral se pode escrever na forma]

\displaystyle\int\dfrac{5x^3+3x-1}{(x^3+3x+1)^3}\;dx=\dfrac{ax+b}{(x^3+3x+1)^2}+C.

Pode encontrar-se uma descrição deste método na secção 2.1 de Table of Integrals, Series, and Products, de Gradshteyn e Ryzhik, em que é apresentada a identidade (2) abaixo.  A fórmula (1) aparece também na página da Wikipedia sobre Ostrogradsky.

Suponha-se que \deg P(x)<\deg Q(x). Existem polinómios P_{1}(x), P_{2}(x), Q_{1}(x) e Q_{2}(x), com Q_{1}(x)=\gcd \left\{ Q(x), Q^{\prime }(x)\right\} e Q_{2}(x)=Q(x)/Q_{1}(x), \deg P_{1}(x) <\deg Q_{1}(x), \deg P_{2}(x) <\deg Q_{2}(x), tais que

\displaystyle\int\dfrac{P(x)}{Q(x)}\; dx=\dfrac{P_{1}(x)}{Q_{1}(x)}+\displaystyle\int \dfrac{P_{2}(x)}{Q_{2}(x)}\; dx.\qquad(1)

Então

\begin{aligned}P(x)&=\dfrac{P_{1}^{\prime }(x)Q_{1}(x)-P_{1}(x)Q_{1}^{\prime }(x)}{\left\{Q_{1}(x)\right\} ^{2}}Q(x)+\dfrac{P_{2}(x)}{Q_{2}(x)}Q(x)\\&=P_{1}^{\prime }(x)\dfrac{Q(x)}{Q_{1}(x)}-P_{1}(x)\dfrac{Q_{1}^{\prime }(x)}{Q_{1}(x)}\dfrac{Q(x)}{Q_{1}(x)}+P_{2}(x)\dfrac{Q(x)}{Q_{2}(x)}\\&=P_{1}^{\prime }(x)Q_{2}(x)-P_{1}(x)\left\{ \dfrac{Q_{1}^{\prime }(x)}{Q_{1}(x)}Q_{2}(x)\right\} +P_{2}(x)Q_{1}(x)\end{aligned}

ou

P(x)=P_{1}^{\prime }(x)Q_{2}(x)-P_{1}(x)\left\{ T(x)-Q_{2}^{\prime }(x)\right\}+P_{2}(x)Q_{1}(x),\qquad(2)

com T(x)=Q^{\prime }(x)/Q_{1}(x), porque de

Q^{\prime }(x)=\left\{ Q_{1}(x)Q_{2}(x)\right\} ^{\prime }=Q_{1}^{\prime}(x)Q_{2}(x)+Q_{1}(x)Q_{2}^{\prime }(x)=T(x)Q_{1}(x)

obtém-se

\dfrac{Q_{1}^{\prime }(x)}{Q_{1}(x)}Q_{2}(x)+Q_{2}^{\prime }(x)=T(x).

Para determinar os coeficientes dos polinómios P_{1}(x) e P_{2}(x) igualamos os coeficientes de iguais potências de  x.

Aplicação a

\dfrac{P(x)}{Q(x)}=\dfrac{5x^{3}+3x-1}{\left( x^{3}+3x+1\right) ^{3}}.

Uma vez que

\begin{aligned}Q(x)&=\left( x^{3}+3x+1\right) ^{3}\\  Q^{\prime }(x)&=9\left( x^{3}+3x+1\right) ^{2}\left( x^{2}+1\right)\\  Q_{1}(x)&=\gcd \left\{ Q(x),Q^{\prime }(x)\right\} =\left( x^{3}+3x+1\right) ^{2}\end{aligned}

e

Q_{2}(x)=\dfrac{Q(x)}{Q_{1}(x)}=\dfrac{\left( x^{3}+3x+1\right) ^{3}}{\left( x^{3}+3x+1\right) ^{2}}=x^{3}+3x+1,

escrevemos

\displaystyle\int \dfrac{5x^{3}+3x-1}{\left( x^{3}+3x+1\right) ^{3}}\; dx=\dfrac{P_{1}(x)}{\left( x^{3}+3x+1\right) ^{2}}+\displaystyle\int \dfrac{P_{2}(x)}{x^{3}+3x+1}\; dx,\qquad (3)

em que

\begin{aligned}P_{1}(x) &=Ax^{5}+Bx^{4}+Cx^{3}+Dx^{2}+Ex+F \\  P_{2}(x) &=Fx^{2}+Gx+H.\end{aligned}

A identidade (2), com

T(x)=\dfrac{Q^{\prime }(x)}{Q_{1}(x)}=9\left( x^{2}+1\right),

resulta em

\begin{aligned}5x^{3}+3x-1 &=\left(5Ax^{4}+4Bx^{3}+3Cx^{2}+2Dx+E\right) \left(x^{3}+3x+1\right)\\&\quad-\left( Ax^{5}+Bx^{4}+Cx^{3}+Dx^{2}+Ex+F\right) \left\{ 9\left(x^{2}+1\right) -\left( 3x^{2}+3\right)\right\}\\&\quad+\left( Gx^{2}+Hx+I\right) \left(x^{3}+3x+1\right)^{2}\\&=Gx^{8}+\left( -A+H\right) x^{7}+\left( -2B+6G+I\right) x^{6}\\  &\quad+\left( 6H-3C+2G+9A\right) x^{5}\\&\quad+\left( -4D+6B+9G+6I+2H+5A\right) x^{4}\\&\quad+\left( 3C-5E+4B+6G+9H+2I\right) x^{3}\\&\quad+\left( 3C-6F+G+6H+9I\right) x^{2}\\&\quad+\left( 6I+H+2D-3E\right) x+\left( E+I-6F\right).\end{aligned}

Igualando os coeficientes obtemos

A=B=C=D=F=G=H=I=0,E=-1.\qquad (4)

Assim,

\begin{aligned}P_1(x) &=-x \\P_2(x) &=0\end{aligned}

e finalmente,

\begin{aligned}\displaystyle\int\dfrac{5x^{3}+3x-1}{\left( x^{3}+3x+1\right)^{3}}\; dx=-\dfrac{x}{\left(x^{3}+3x+1\right) ^{2}}+C,\qquad (5)\end{aligned}

como determinado por si.