Dois métodos de cálculo de ζ(2)

Desta minha resposta no MSE.

1. Desenvolvimento em série trigonométrica de Fourier de x^{2}

Podemos usar a função f(x)=x^{2} com -\pi\leq x\leq\pi e determinar  o seu desenvolvimento em série trigonométrica de Fourier

\dfrac{a_{0}}{2}+\displaystyle\sum_{n=1}^{\infty }(a_{n}\cos nx+b_{n}\sin x),

que é periódico e converge para f(x) em -\pi\leq x\leq\pi.

Reparando que f(x) é par, basta determinar os coeficientes

a_{n}=\dfrac{1}{\pi }\displaystyle\int_{-\pi }^{\pi }f(x)\cos nx\;dx\qquad n=0,1,2,3,\dots,

porque

b_{n}=\dfrac{1}{\pi }\displaystyle\int_{-\pi }^{\pi }f(x)\sin nx\;dx=0\qquad n=1,2,3,\dots

Para n=0 temos

a_{0}=\dfrac{1}{\pi }\displaystyle\int_{-\pi }^{\pi }x^{2}dx=\dfrac{2}{\pi }\int_{0}^{\pi}x^{2}dx=\dfrac{2\pi ^{2}}{3}.

E para n=1,2,3,\dots obtemos

a_{n}=\dfrac{1}{\pi }\displaystyle\int_{-\pi }^{\pi }x^{2}\cos nx\;dx

=\dfrac{2}{\pi }\displaystyle\int_{0}^{\pi }x^{2}\cos nx\;dx=\dfrac{2}{\pi }\times \dfrac{2\pi }{n^{2}}(-1)^{n}=(-1)^{n}\dfrac{4}{n^{2}},

porque

\displaystyle\int x^2\cos nx\;dx=\dfrac{2x}{n^{2}}\cos nx+\left( \dfrac{x^{2}}{n}-\dfrac{2}{n^{3}}\right) \sin nx.

Assim

f(x)=\dfrac{\pi ^{2}}{3}+\displaystyle\sum_{n=1}^{\infty }\left( (-1)^{n}\dfrac{1}{n^{2}}\cos nx\right).

Como f(\pi )=\pi ^{2} obtemos

\pi ^{2}=\dfrac{\pi ^{2}}{3}+\displaystyle\sum_{n=1}^{\infty }\left( (-1)^{n}\dfrac{4}{n^{2}}\cos \left( n\pi \right) \right)

\pi ^{2}=\dfrac{\pi ^{2}}{3}+4\displaystyle\sum_{n=1}^{\infty }\left( (-1)^{n}(-1)^{n}  \dfrac{1}{n^{2}}\right)

\pi ^{2}=\dfrac{\pi ^{2}}{3}+4\displaystyle\sum_{n=1}^{\infty }\dfrac{1}{n^{2}}.

Logo

\zeta(2)=\displaystyle\sum_{n=1}^{\infty }\dfrac{1}{n^{2}}=\dfrac{\pi ^{2}}{4}-\dfrac{\pi ^{2}}{12}=\dfrac{\pi ^{2}}{6}

2. Desenvolvimento em série de \text{Log}(1-e^{ix}) (por Eric Rowland; disponível online há alguns anos atrás)

A partir de

\log (1-t)=-\displaystyle\sum_{n=1}^{\infty}\dfrac{t^n}{n},

fazendo a substituição t=e^{ix}, obtém-se a série

w=\text{Log}(1-e^{ix})=-\displaystyle\sum_{n=1}^{\infty }\dfrac{e^{inx}}{n}=-\displaystyle\sum_{n=1}^{\infty }\dfrac{1}{n}\cos nx-i\displaystyle\sum_{n=1}^{\infty }\dfrac{1}{n}\sin nx,

cujo raio de convergência é  igual a 1. Tomando a parte imaginária de ambos os membros, o 2.º transforma-se em

\Im w=-\displaystyle\sum_{n=1}^{\infty }\dfrac{1}{n}\sin nx,

e o 1.º,

\Im w=\arg\left( 1-\cos x-i\sin x\right) =\arctan\dfrac{-\sin x}{1-\cos x}.

Como

\arctan\dfrac{-\sin x}{1-\cos x}=-\arctan\dfrac{2\sin\dfrac{x}{2}\cdot\cos\dfrac{x}{2}}{2\sin ^{2}\dfrac{x}{2}}

=-\arctan\cot \dfrac{x}{2}=-\arctan\tan\left( \dfrac{\pi }{2}-\dfrac{x}{2}  \right) =\dfrac{x}{2}-\dfrac{\pi }{2},

é válido o seguinte desenvolvimento em série

\dfrac{\pi }{2}-\dfrac{x}{2}=\displaystyle\sum_{n=1}^{\infty }\dfrac{1}{n}\sin nx.\qquad(\ast )

Integrando (\ast ), obtém-se

\dfrac{\pi }{2}x-\dfrac{x^{2}}{4}+C=-\displaystyle\sum_{n=1}^{\infty }\dfrac{1}{n^{2}}\cos nx.\qquad (\ast\ast )

Fazendo x=0, obtemos a relação entre C e \zeta (2)

C=-\displaystyle\sum_{n=1}^{\infty }\dfrac{1}{n^{2}}=-\zeta (2).

E para x=\pi, como

\zeta (2)=2\displaystyle\sum_{n=1}^{\infty }\dfrac{(-1)^{n-1}}{n^{2}},

deduz-se

\dfrac{\pi ^{2}}{4}+C=-\displaystyle\sum_{n=1}^{\infty }\dfrac{1}{n^{2}}\cos n\pi  =\displaystyle\sum_{n=1}^{\infty }\dfrac{(-1)^{n-1}}{n^{2}}=\dfrac{1}{2}\zeta (2)=-\dfrac{1}{2}C.

Resolvendo em ordem a C

C=-\dfrac{\pi ^{2}}{6},

prova-se assim que

\zeta (2)=\dfrac{\pi ^{2}}{6}.

Nota: este método gera todos os valores de \zeta (2n), integrando repetidamente (\ast\ast ). Infelizmente não resulta para \zeta (2n+1).

About these ads

Sobre Américo Tavares

eng. electrotécnico reformado / retired electrical engineer
Esta entrada foi publicada em Análise Complexa, Análise de Fourier, Exercícios Matemáticos, Matemática, Mathematics Stack Exchange, Problemas, Séries, Teorema / Teoria, Teoria dos Números com as etiquetas , , , . ligação permanente.

2 respostas a Dois métodos de cálculo de ζ(2)

  1. Excelentes métodos para achar zeta(2). Muito obrigado por compartilhar estes métodos conosco.

Deixar uma resposta

Preencha os seus detalhes abaixo ou clique num ícone para iniciar sessão:

WordPress.com Logo

Está a comentar usando a sua conta WordPress.com Log Out / Modificar )

Imagem do Twitter

Está a comentar usando a sua conta Twitter Log Out / Modificar )

Facebook photo

Está a comentar usando a sua conta Facebook Log Out / Modificar )

Google+ photo

Está a comentar usando a sua conta Google+ Log Out / Modificar )

Connecting to %s